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Challenges Addressed: Dynamics in Exascale Systems. System support for future high end machines must address the
rich and varied nature of their applications. These will be comprised of multiple (not single) linked simulations interact-
ing via dynamic application properties, running along with online analytics and visualizations that comprehend simulation
outputs and use them to control ongoing computations, interacting with complex online methods for controlling resource
usage, data movement, and dealing with failures in which certain machine resources may become unavailable while appli-
cations run or cause application’s to fail in delivering useful output. These facts strongly distinguish the exascale from the
petascale regime. The latter permitted single compiled and loaded MPI applications loaded into statically reserved machine
resources, whereas the former requires system support in which resources are actively managed in ways that efficiently
use machine resources, avoid unnecessary data movement, and directly address the potential failures seen on ever larger
exascale platforms.

As a simple illustration of the dynamic behavior of future exascale codes, consider the new approach to data analytics
and visualization pursued by current exascale teams, in which the analysis of ‘data at rest’ (i.e., on disk) is replaced by one
in which data analytics are conducted and insights are obtained from ‘data in motion’ (i.e., analytics and visualizations are
produced directly from the outputs generated by applications), on-die, on-node, and on-machine. Additional online methods
also being run include application-specific techniques like uncertainty quantification, to ensure the correct functioning of
application codes and/or the validity of the results they produce. Such ’on demand’ applications, then, run when and if
needed, at application-specific time intervals or upon occurrence of certain application or system events, and their execution
may also be triggered by user desires to ’zoom into’ and to deal with interesting or problematic application behavior.
Contributions and Applicability. We propose research that responds to the increasingly dynamic nature of high end
applications on future machines: (1) Dynamic change and control: online resource controls are needed to meet the functional
and operational challenges articulated above, guided by diverse metrics, including power consumption and data movement.
(2) Online constraints: must be enforced to meet metric requirements. (3) Resource customization: is needed to adjust to
multiple sets of dynamically defined and deployed application codes, which can be run, on demand and upon need.

We target extreme-scale science codes with our work, through ongoing collaborations with a large set of DOE and in-
dustry researchers, including (i) fusion modeling researchers, the combustion co-design effort, astrophysics researchers, and
other petascale applications, (ii) leveraging the ADIOS I/O methods successfully used with petascale codes, (iii) involving
research on light-weight, continuous fault detection and mitigation at ORNL (Rao) and more general resilience methods at
Sandia (Lofstead and others), and (iv) in long-standing collaborative research with Intel and HP Corporations.
Concrete Elements: Constructing Core Containers. Today’s batch-scheduled petascale machines offer inadequate sup-
port for running and controlling the many dynamic and concurrent activities seen on future exascale platforms. Needed are
runtime methods for allocating and controlling the resources of future exascale machines, which we term Core Containers.
The goal is to enrich machines with new functionality that provides effective, lightweight, and scalable control over how
machine resources are used. (i) Core Containers comprising sets of nodes and node resources (e.g., cores) are the means for
providing resources to the different activities required by exascale science applications (ii) They track per activity progress
in lieu of container resources; and they (iii) have active controls to meet their activities’ dynamic resource requirements,
using methods that range from those employing spare resources upon need (e.g., to otherwise use them as ‘dark silicon’
to curtail power usage), to those that ‘trade’ resources between different containers. (iv) Allocation and management deci-
sions are driven by flexible metrics, foremost concerned with application progress, but also to take into account the failure
likelihood of container resources (e.g., due to prior detected abnormal behavior) in lieu of the robustness to failures of the
activities being run, and in addition, to consider the effects on activities from the resources shared between containers (e.g.,
their use of a common machine interconnect).

With core containers, each of the actions, be they analytics, visualization, verification, or coupled simulation code,
are launched into a dynamically provisionable container. This contrasts with the static, compute socket-based allocations
used by most HPC schedulers today. Because launching an activity into a container is more than just placing it onto some
particular node within an interconnect, we can track important execution metadata, like current connectivity or degree of
resilience of the hardware, and make it easier for the application to utilize without the end user having to code all of it by
hand. Above all, there is transparency for end users – it is as effortless to launch a parallel activity into a container as it is to
launch a parallel job with today’s static schedulers, and containers will offer high performance communication services that
will appear to end users to be as easy to use as MPI or simple Fortran write statements are today. In summary, the proposed
container-based runtime will move science from today’s static use of petascale machine resources to a regime in which there
are differential controls on resource allocations to the many concurrent activities running on future exascale machines.



Detailed technical elements include the following. (1) Container-based runtime infrastructure: efficient and scalable
runtime abstractions for creating, deleting, and managing containers; per container managers customized to each assem-
bly activity’s needs; inter-container methods to acquire/release resources, driven by metrics pertaining to application re-
quirements and platform needs (e.g., power consumption). (2) Container resilience: methods that efficiently and reliably
manage containers and can make guarantees about container states (i.e., their data), using transactional techniques using
additional lightweight methods for runtime hardware/software fault monitoring, and exploiting per-node persistent memory
like NVRAM (already ongoing in joint work with HP Labs). (3) Efficient execution of dynamic exascale codes: represen-
tative codes run in containers, to include (i) online analytics applied to the output data generated by scientific simulations
and/or (ii) visual depictions of said data to better answer end user questions about current simulation state or progress,
(iii) uncertainty quantification or similar actions run for representative science codes, using containers to differentially and
dynamically allocate machine resources to simulation or ‘checking’ actions, and (iv) application of the concept to represen-
tative applications, leveraging our participation in the fusion modeling community and the combustion co-design team. (4)
Accelerated science: using realistic science codes, demonstrate how dynamically elastic containers can better meet applica-
tion performance goals and improve the delivery of scientific results to end users, and can help maintain platform properties,
such as caps on power consumption.
Maturity. Core container technology interacts with but does not depend on specific operating systems or compiler runtimes.
Instead, much like hypervisors, it represents a control layer inserted between the exascale execution environment provided
by vendors and the program runtime assumed by compilers. The purpose of this layer is to manage runtime resources in
the ways needed by applications, and to do so in ways that are scalable and sustainable. Scalability is obtained from the
‘divide and conquer’ approach being used, where different containers can have entirely different managers and use entirely
different strategies for controlling how their internal activities use container resource sets. Those resource sets, in fact, can
be quite large, extending to say, the petascale-sized resource sets used by current high end simulations. Sustainability is
derived from the fact that containers and their management methods do not assume certain programming paradigms, so, do
not impose limitations on the programming models now being explored by exascale researchers.

Container technology exists on individual exascale nodes and across many machine nodes. For individual manycore
platforms, our previous work has developed related technology on the basis of existing open source software [2, 10],
resulting in multiple on-node ‘domains’ that are isolated from each other with respect to failures but can also be elastically
sized to provide to applications the resources they need. Our team is already creating separately managed containers that
extend across subsets of nodes on petascale machines, a simple use case being one in which one container manages online
analytics for simulation outputs [19] and the other runs visualization code [17]. Differential resource allocations to analytics
vs. visualization includes those that extend across both compute and ‘staging’ nodes [1]. There will be reliability guarantees
for data movements across containers [4] and in addition, to assess tradeoffs in such data movement vs. simulation/analytics
performance [18].

Past research other than ours has established the utility of core containers both on and across platforms. Operating system
efforts include Cellular-Disco [7], Hive [3], and K42 [9]. [3] uses resource-partitions for fault-containment, and [9] uses
them to exploit locality. Missing from such work, however, are the abstractions and methods for inter-container interactions
required to maintain desired larger-scale application- or platform/machine-level requirements. In particular, in exascale
systems, it will not be sufficient to simply ‘gang-schedule’ the activities running in different containers (e.g., as done in
[7]). Instead, the container runtime must permit arbitrary interactions, such as those needed for ‘pipelined’ containers (e.g.,
when one container’s activity – online analytics – processes the outputs of another’s – the simulation producing the outputs
to be analyzed). Further, for such interactions, one must distinguish the control from the data plane. To move application
data, one can use I/O primitives like those provided by the ADIOS componentized I/O infrastructure [11, 5]. For the
control communications linking different container managers, we will leverage rich past work on many-to-many eventing
mechanisms [6], as well as collective communicators [13]. In addition, we adopt from prior work an approach that obtains
scalability and independence by only loosely coupling multiple container controllers by use of scalable eventing primitives;
we will add discretionary reliability properties to those primitives [4]; and we will design higher level semantics that
explicitly support adaptive control as a key purpose of inter-container interaction, in part by drawing on the ‘coordination’
abstractions used in the substantial body of work in distributed control theory and multi-agent systems, as described in [12].

In collaboration with industry (HP Labs) and DOE (DOE Sandia), we have gained extensive experience with the re-
silience technologies needed to make containers succeed, which includes online monitoring/tracking – from [8] to [15];
analysis techniques at scale [16]; mitigation methods to deal with the effects of detected abnormalities or failures (e.g.,
detected deviations in the outputs of a molecular simulation triggering an atomistic simulation to correct them); and pre-
vention, methods to prevent faults or failures, like the transactional techniques for select data movement or control actions
across containers.
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